Advanced Communications and Networking Techniques for Wireless Connected Intelligent Robot Swarms

Submission Deadline: 31 May 2020

IEEE Access invites manuscript submissions in the area of Advanced Communications and Networking Techniques for Wireless Connected Intelligent Robot Swarms.

Robot swarm is one of the hottest topics in both robotics and artificial intelligence, and exciting progress is being achieved. As the key enablers in practical robot swarms, communication and networking are attracting attention. Most applications consider centralized control and reliable communication infrastructure, in order to avoid the significantly increased complexity of distributed task allocation, formation control and collision avoidance in robot swarms.

There are many challenges and problems that are yet to be solved in developing real-world applications of wireless connected robot swarms. For example, collaborations of heterogeneous robot swarms need to function reliably and robustly in the absence of communication infrastructures in remote areas or post-disaster rescues. The research of communications and networking for wireless-connected robot swarms demands joint efforts in robotic and communications disciplines. The objective is to develop technologies that enable efficient management of wireless spectrum resources and highly-networked intelligent behaviors to achieve the full potential of wireless-connected robot swarms.

This Special Section in IEEE Access aims to present recent developments in communications and networking for wireless connected intelligent robot swarms, and their applications, as well as to provide a reference for future research of wireless communication and networking, and their integration with autonomous robotics. The contributions of this Special Section will cover a wide range of research and development topics relevant to autonomous robotic design, cognitive communications, cognitive networking and artificial intelligence. We invite submissions of high-quality original technical and survey articles, which have not been published previously, on the analysis, modeling, simulations and field experiments, as well as articles that can fill the gap between theoretical contributions on intelligent swarms and practical demonstrations and applications.

The topics of interest include, but are not limited to:

  • Channel modeling and simulation for wireless connected robot swarms
  • Cognitive PHY and MAC protocol design for wireless connected robot swarms
  • Ad hoc networking for wireless connected robot swarms
  • Decentralized control and distributed protocol design for wireless connected robot swarms
  • Energy scavenging and power transfer techniques for wireless connected robot swarms
  • Data-driven optimization of wireless networks for robot swarms
  • Joint design of wireless communications and autonomous robot behaviours, e.g. networked control, network-based fault detection and tolerance, path planning, formation control, data sharing without explicit wireless communications etc.
  • Testbeds and experimental evaluations for communications and networking in wireless-connected robot swarms
  • Field demonstrations and applications of aerial, ground and underwater robotic swarms
  • Resource allocation in wireless-connected robot swarms
  • Applications of deep learning techniques in wireless connected robot swarms
  • Transfer learning and reinforcement learning for networking and communications of robot swarms in complex unknown and unexplored environments
  • Maintaining wireless communication-connectivity in wireless-connected robot swarms
  • Underwater robotic swarm communications and networking design
  • Control algorithm and behavior issues in wireless-connected robot swarms
  • Distributed sensing and precise mapping in wireless-connected robot swarms
  • Effect of smart sensing technologies on communications in wireless-connected robot swarms
  • Control, formation and navigation in wireless-connected robot swarms
  • Swarm intelligence in wireless-connected robot swarms
  • Cooperative robotic swarms for Internet-of-Things ecosystems

We also highly recommend the submission of multimedia with each article as it significantly increases the visibility, downloads, and citations of articles.


Associate Editor:  Jiankang Zhang, University of Southampton, UK

Guest Editors:

  1. Bo Zhang, National Innovation Institute of Defense Technology, China
  2. DaeEun Kim, Yonsei University, Korea
  3. Hui Cheng, Sun Yat-sen University, China
  4. Jinming Wen, University of Toronto, Canada
  5. Luciano Bononi, University of Bologna, Italy
  6. Venanzio Cichella, University of Iowa, USA


Relevant IEEE Access Special Sections:

  1. Networks of Unmanned Aerial Vehicles: Wireless Communications, Applications, Control and Modelling
  2. Network Resource Management in Flying Ad Hoc Networks: Challenges, Potentials, Future Applications, and Wayforward
  3. Artificial Intelligence and Cognitive Computing for Communications and Networks

IEEE Access Editor-in-Chief:
  Prof. Derek Abbott, University of Adelaide

Article submission: Contact Associate Editor and submit manuscript to:

For inquiries regarding this Special Section, please contact: