Orthogonal Chirp-Division Multiplexing for Future Converged Optical/Millimeter-Wave Radio Access Networks

Envisaged network scaling in the beyond 5G and 6G era makes the optical transport of high bandwidth radio signals a critical aspect for future radio access networks (RANs), while the move toward wireless transmission in millimeter-wave (mm-wave) and terahertz (THz) environments is pushing a departure from the currently deployed orthogonal frequency division multiplexing (OFDM) modulation scheme. In this work, the orthogonal chirp-division multiplexing (OCDM) waveform is experimentally deployed in a converged optical/mm-wave transmission system comprising 10 km analog radio-over-fiber (A-RoF) transmission, remote mm-wave generation and 2 m wireless transmission at 60 GHz. System performance is evaluated in terms of both bit error ratio (BER) and error vector magnitude (EVM) for a wideband 4 GHz 16 Gb/s signal and 128/256-Quadrature Amplitude Modulation (QAM) mobile signals compatible with 5G new radio numerology. OCDM is shown to outperform OFDM by offering enhanced robustness to channel frequency selectivity, enabling performances below the forward error correction (FEC) limit in all cases and exhibiting an EVM as low as 3.4% in the case of the mobile signal transmission.

*Published in the IEEE Photonics Society Section within IEEE Access.

View this article on IEEE Xplore

 

ML-Based Classification of Device Environment Using Wi-Fi and Cellular Signal Measurements

Future spectrum sharing rules very likely will be based on device environment: indoors or outdoors. For example, the 6 GHz rules created different power regimes for unlicensed devices to protect incumbents: “indoor” devices, subject to lower transmit powers but not required to access an Automatic Frequency Control database to obtain permission to use a channel, and “outdoor” devices, allowed to transmit at higher power but required to do so to determine channel availability. However, since there are no reliable means of determining if a wireless device is indoors or outdoors, other restrictions were mandated: reduced power for client devices and indoor access points that cannot be battery powered, have detachable antennas or be weatherized. These constraints lead to sub-optimal spectrum usage and potential for misuse. Hence, there is a need for robust identification of device environments to enable spectrum sharing. In this paper we study automatic indoor/outdoor classification based on the radio frequency (RF) environment experienced by a device. Using a custom Android app, we first create a labeled data set of a number of parameters of Wi-Fi and cellular signals in various indoor and outdoor environments, and then evaluate the classification performance of various machine learning (ML) models on this data set. We find that tree-based ensemble ML models can achieve greater than 99% test accuracy and F1-Score, thus allowing devices to self-identify their environment and adapt their transmit power accordingly.

View this article on IEEE Xplore

 

Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results

One of the key enablers of future wireless communications is constituted by massive multiple-input multiple-output (MIMO) systems, which can improve the spectral efficiency by orders of magnitude. In existing massive MIMO systems, however, conventional phased arrays are used for beamforming. This method results in excessive power consumption and high hardware costs. Recently, reconfigurable intelligent surface (RIS) has been considered as one of the revolutionary technologies to enable energy-efficient and smart wireless communications, which is a two-dimensional structure with a large number of passive elements. In this paper, we develop a new type of high-gain yet low-cost RIS that bears 256 elements. The proposed RIS combines the functions of phase shift and radiation together on an electromagnetic surface, where positive intrinsic-negative (PIN) diodes are used to realize 2-bit phase shifting for beamforming. This radical design forms the basis for the world’s first wireless communication prototype using RIS having 256 two-bit elements. The prototype consists of modular hardware and flexible software that encompass the following: the hosts for parameter setting and data exchange, the universal software radio peripherals (USRPs) for baseband and radio frequency (RF) signal processing, as well as the RIS for signal transmission and reception. Our performance evaluation confirms the feasibility and efficiency of RISs in wireless communications. We show that, at 2.3 GHz, the proposed RIS can achieve a 21.7 dBi antenna gain. At the millimeter wave (mmWave) frequency, that is, 28.5 GHz, it attains a 19.1 dBi antenna gain. Furthermore, it has been shown that the RIS-based wireless communication prototype developed is capable of significantly reducing the power consumption.

*Promotional prize winner of the 2020 IEEE Access Best Multimedia Award (Part 1)

View this article on IEEE Xplore

Green Elevator Scheduling Based on IoT Communications

In this paper, we propose an energy-saving elevator scheduling algorithm to reduce the car moving steps to achieve motor energy saving and green wireless communications. The proposed algorithm consisting of six procedures can attain fewer Internet of Things (IoT) message exchanges (i.e. communication transmissions) between the Scheduler subsystem and the Car subsystem via the core function AssignCar(r). The function AssignCar(r) is capable of assigning a request to the nearest car through car search globally. From the emulation results for four cars, this work shows that the proposed algorithm outperforms the previous work named as aggressive car scheduling with initial car distribution (ACSICD) algorithm with energy consumption reductions by 49.43%, 47.68%, 37.89%, and 47.65% for up-peak, inter-floor, downpeak, and all-day request patterns, respectively.

View this article on IEEE Xplore

Complex Systems: A Communication Networks Perspective Towards 6G

 

Over the last few years, the analysis and modeling of networks as well as the analysis and modeling of networked dynamical systems, has attracted considerable interdisciplinary interest, especially using the complex systems theory. These efforts are driven by the fact that systems, as diverse as genetic networks or the Internet can be effectively described as complex networks. Contrary, despite the unprecedented evolution of technology, basic issues and fundamental principles related to the structural and evolutionary properties of communication networks still remain largely unaddressed. The situation is even more complicated when we attempt to model the mobile communication networks and especially the 5th generation (5G) and eventually the forthcoming 6th generation (6G). In this work, we attempt to review basic models of complex networks from a communication networks perspective, focusing on their structural and evolutionary properties. Based on this review we aim to reveal the models of complex networks, that may apply when modeling the 5G and 6G mobile communication networks. Furthermore, we expect to encourage the collaboration between complex systems and networking theorists toward meeting the challenging demands of 5G networks and beyond.

View this article on IEEE Xplore

A Novel Design Approach for 5G Massive MIMO and NB-IoT Green Networks Using a Hybrid Jaya-Differential Evolution Algorithm

 

Our main objective is to reduce power consumption by responding to the instantaneous bit rate demand by the user for 4th Generation (4G) and 5th Generation (5G) Massive MIMO network configurations. Moreover, we present and address the problem of designing green LTE networks with the Internet of Things (IoT) nodes. We consider the new NarrowBand-IoT (NB-IoT) wireless technology that will emerge in current and future access networks. In this context, we apply emerging evolutionary algorithms in the context of green network design. We investigate three different cases to show the performance of the new proposed algorithm, namely the 4G, 5G Massive MIMO, and the NB-IoT technologies. More specifically, we investigate the Teaching-Learning-Optimization (TLBO), the Jaya algorithm, the self-adaptive differential evolution jDE algorithm, and other hybrid algorithms. We introduce a new hybrid algorithm named Jaya-jDE that uses concepts from both Jaya and jDE algorithms in an effective way. The results show that 5G Massive MIMO networks require about 50% less power consumption than the 4G ones, and the NB-IoT in-band deployment requires about 10% less power than guard-band deployment. Moreover, Jaya-jDE emerges as the best algorithm based on the results.

View this article on IEEE Xplore

Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond

 

Frequencies from 100 GHz to 3 THz are promising bands for the next generation of wireless communication systems because of the wide swaths of unused and unexplored spectrum. These frequencies also offer the potential for revolutionary applications that will be made possible by new thinking, and advances in devices, circuits, software, signal processing, and systems. This paper describes many of the technical challenges and opportunities for wireless communication and sensing applications above 100 GHz, and presents a number of promising discoveries, novel approaches, and recent results that will aid in the development and implementation of the sixth generation (6G) of wireless networks, and beyond. This paper shows recent regulatory and standard body rulings that are anticipating wireless products and services above 100 GHz and illustrates the viability of wireless cognition, hyper-accurate position location, sensing, and imaging. This paper also presents approaches and results that show how long distance mobile communications will be supported to above 800 GHz since the antenna gains are able to overcome air-induced attenuation, and present methods that reduce the computational complexity and simplify the signal processing used in adaptive antenna arrays, by exploiting the Special Theory of Relativity to create a cone of silence in over-sampled antenna arrays that improve performance for digital phased array antennas. Also, new results that give insights into power efficient beam steering algorithms, and new propagation and partition loss models above 100 GHz are given, and promising imaging, array processing, and position location results are presented. The implementation of spatial consistency at THz frequencies, an important component of channel modeling that considers minute changes and correlations over space, is also discussed. This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches.

View this article on IEEE Xplore

Most Popular Article of 2017: 5G Cellular User Equipment: From Theory to Practical Hardware Design

Research and development on the next generation wireless systems, namely 5G, has experienced explosive growth in recent years. In the physical layer, the massive multiple-input-multiple output (MIMO) technique and the use of high GHz frequency bands are two promising trends for adoption. Millimeter-wave (mmWave) bands, such as 28, 38, 64, and 71 GHz, which were previously considered not suitable for commercial cellular networks, will play an important role in 5G. Currently, most 5G research deals with the algorithms and implementations of modulation and coding schemes, new spatial signal processing technologies, new spectrum opportunities, channel modeling, 5G proof of concept systems, and other system-level enabling technologies. In this paper, we first investigate the contemporary wireless user equipment (UE) hardware design, and unveil the critical 5G UE hardware design constraints on circuits and systems. On top of the said investigation and design tradeoff analysis, a new, highly reconfigurable system architecture for 5G cellular user equipment, namely distributed phased arrays based MIMO (DPA-MIMO) is proposed. Finally, the link budget calculation and data throughput numerical results are presented for the evaluation of the proposed architecture.

View this article on IEEE Xplore