Analysing Recovery From Pandemics by Learning Theory: The Case of CoVid-19

We present a method for predicting the recovery time from infectious diseases outbreaks such as the recent CoVid-19 virus. The approach is based on the theory of learning from errors, specifically adapted to the control of the virus spread by reducing infection rates using countermeasures such as medical treatment, isolation, social distancing etc. When these are effective, the infection rate, after reaching a peak, declines following what we call the Universal Recovery Curve. We use presently available data from many countries to make actual predictions of the recovery trend and time needed for securing minimum infection rates in the future. We claim that the trend of decline is direct evidence of learning about risk reduction, also in this case of the pandemic.

*Published in the IEEE Engineering in Medicine and Biology Society Section within IEEE Access.

View this article on IEEE Xplore

 

Robots Under COVID-19 Pandemic: A Comprehensive Survey

As a result of the difficulties brought by COVID-19 and its associated lockdowns, many individuals and companies have turned to robots in order to overcome the challenges of the pandemic. Compared with traditional human labor, robotic and autonomous systems have advantages such as an intrinsic immunity to the virus and an inability for human-robot-human spread of any disease-causing pathogens, though there are still many technical hurdles for the robotics industry to overcome. This survey comprehensively reviews over 200 reports covering robotic systems which have emerged or have been repurposed during the past several months, to provide insights to both academia and industry. In each chapter, we cover both the advantages and the challenges for each robot, finding that robotics systems are overall apt solutions for dealing with many of the problems brought on by COVID-19, including: diagnosis, screening, disinfection, surgery, telehealth, care, logistics, manufacturing and broader interpersonal problems unique to the lockdowns of the pandemic. By discussing the potential new robot capabilities and fields they applied to, we expect the robotics industry to take a leap forward due to this unexpected pandemic.

View this article on IEEE Xplore

Review of Sterilization Techniques for Medical and Personal Protective Equipment Contaminated With SARS-CoV-2

 

The outbreak of the novel coronavirus disease, COVID-19 turned into a global pandemic in March 2020. During these unprecedented times, there is an increased demand in medical and personal protective equipment (PPE). Since the supplies may take a long time to meet the global demand, reusing PPEs will help health care workers in their response to the COVID-19 pandemic. To ensure the safety and well-being of the medical first responders, PPE needs to be sterilized before reuse. In this review, we examine various sterilization techniques that can be used to sterilize PPEs and point out its limitations. The objective is to provide a foundation of knowledge incorporating different sterilization techniques that allow hospitals and clinics to pick the most suitable technique for sterilization of a particular PPE.

View this article on IEEE Xplore

Dengue Epidemics Prediction: A Survey of the State-of-the-Art based on Data Science Processes

Dengue infection is a mosquito-borne disease caused by dengue viruses, which are carried by several species of mosquito of the genus Aedes, principally Ae. aegypti. Dengue outbreaks are endemic in tropical and sub-tropical regions of the world, mainly in urban and sub-urban areas. The outbreak is one of the top ten diseases causing the most deaths worldwide. According to the World Health Organization (WHO), dengue infection has increased 30-fold globally over the past five decades. About 50 to 100 million new infections occur annually in more than 80 countries. Many researchers are working on measures to prevent and control the spread. One avenue of research is collaboration between computer science and the epidemiology researchers in developing methods of predicting potential outbreaks of dengue infection. An important research objective is to develop models that enable, or enhance, forecasting of outbreaks of dengue, giving medical professionals the opportunity to develop plans for handling the outbreak, well in advance. Researchers have been gathering and analyzing data to better identify the relational factors driving the spread of the disease, as well as the development of a variety of methods of predictive modelling using statistical and mathematical analysis and Machine Learning. In this substantial review of the literature on the state of the art of research over the past decades, we identified six main issues to be explored and analyzed: (1) The available data sources, (2) Data preparation techniques, (3) Data representations, (4) Forecasting models and methods, (5) Dengue forecasting models evaluation approaches, and (6) Future challenges and possibilities in forecasting modelling of dengue outbreaks. Our comprehensive exploration of the issues provides a valuable information foundation for new researchers in this important area of public health research and epidemiology.

View this article on IEEE Xplore