Doppler Spectrum Measurement Platform for Narrowband V2V Channels

This paper describes the implementation of a Doppler spectrum measurement platform for narrowband frequency-dispersive vehicle-to-vehicle (V2V) channels. The platform is based on a continuous-wave (CW) channel sounding approach widely used for path-loss and large-scale fading measurements, but whose effectiveness to measure the Doppler spectrum of V2V channels is not equally known. This channel sounding method is implemented using general-purpose hardware in a configuration that is easy to replicate and that enables a partial characterization of frequency-dispersive V2V channels at a fraction of the cost of a dedicated channel sounder. The platform was assessed in a series of field experiments that collected empirical data of the instantaneous Doppler spectrum, the mean Doppler shift, the Doppler spread, the path-loss profile, and the large-scale fading distribution of V2V channels under realistic driving conditions. These experiments were conducted in a highway scenario near San Luis Potosí, México, at two different carrier frequencies, one at 760MHz and the other at 2,500MHz. The transmitting and receiving vehicles were moving in the same direction at varying speeds, ranging from 20 to 130km/h and dictated by the unpredictable traffic conditions. The obtained results demonstrate that the presented measurement platform enables the spectral characterization of narrowband V2V channels and the identification of their Doppler signatures in relevant road-safety scenarios, such as those involving overtaking maneuvers and rapid vehicles approaching the transmitter and receiver in the opposite direction.

*Published in the IEEE Vehicular Society Section within IEEE Access.

View this article on IEEE Xplore

 

Absorption of 5G Radiation in Brain Tissue as a Function of Frequency, Power and Time

The rapid release of 5G wireless communications networks has spurred renewed concerns regarding the interactions of higher radiofrequency (RF) radiation with living species. We examine RF exposure and absorption in ex vivo bovine brain tissue and a brain simulating gel at three frequencies: 1.9 GHz, 4 GHz and 39 GHz that are relevant to current (4G), and upcoming (5G) spectra. We introduce a highly sensitive thermal method for the assessment of radiation exposure, and derive experimentally, accurate relations between the temperature rise (ΔT), specific absorption rate (SAR) and the incident power density (F), and tabulate the coefficients, ΔT/ΔF and Δ(SAR)/ΔF, as a function of frequency, depth and time. This new method provides both ΔT and SAR applicable to the frequency range below and above 6 GHz as shown at 1.9, 4 and 39 GHz, and demonstrates the most sensitive experimental assessment of brain tissue exposure to millimeter-wave radiation to date, with a detection limit of 1 mW. We examine the beam penetration, absorption and thermal diffusion at representative 4G and 5G frequencies and show that the RF heating increases rapidly with frequency due to decreasing RF source wavelength and increasing power density with the same incident power and exposure time. We also show the temperature effects of continuous wave, rapid pulse sequences and single pulses with varying pulse duration, and we employ electromagnetic modeling to map the field distributions in the tissue. Finally, using this new methodology, we measure the thermal diffusivity of ex vivo bovine brain tissue experimentally.

View this article on IEEE Xplore

Comparison of Measurement Methods for the Frequency Range 2–150 kHz (Supraharmonics) Based on the Present Standards Framework

Advances in power electronics, increasing share of renewables in the energy system and e-mobility cause an increase of disturbances in the frequency range 2-150 kHz, also known as supraharmonics. A rigorous, credible and agreed measurement framework is essential to evaluate electromagnetic compatibility (EMC) in this frequency range. While a normative method exists for measuring equipment emission in the laboratory, no normative method exists yet for the measurement of supraharmonic disturbance levels in the grid. The aim of this research is a detailed comparison of potential measurement methods derived from existing standards IEC 61000-4-7, IEC 61000-4-30, CISPR 16-1-1 and a critical assessment of their suitability for disturbance measurements in grid applications. Based on a comprehensive set of synthetic signals and real measurements from laboratory and field, this article studies the ability of the methods to assess the typical characteristics of supraharmonic emission with relevance to EMC coordination. It presents the benefits and drawbacks of the existing measurement methods and discusses the suitability of possible modifications for grid compliance assessment. The results and recommendations intend to be an input for the present activities of IEC SC 77A WG 9 to define a normative method for the measurement of supraharmonic disturbance levels to be included in the next edition of IEC 61000-4-30.

View this article on IEEE Xplore