MMNeRF: Multi-Modal and Multi-View Optimized Cross-Scene Neural Radiance Fields

We present MMNeRF, a simple yet powerful learning framework for highly photo-realistic novel view synthesis by learning Multi-modal and Multi-view features to guide neural radiance fields to a generic model. Novel view synthesis has achieved great improvement with the significant success of NeRF-series methods. However, how to make the method generic across scenes has always been a challenging task. A good idea is to introduce 2D image features as prior knowledge for adaptive modeling, yet RGB features lack geometry and 3D spatial information, which causes shape-radiance ambiguity issues and lead to blurry and low-resolution results in the synthesis images. We propose a multi-modal multi-view method to make up for the existing methods. Specifically, we introduce depth features besides RGB features into the model and effectively fuse these multi-modal features by modality-based attention. Furthermore, Our framework innovatively adopts the transformer encoder to fuse multi-view features and uses the transformer decoder to adaptively incorporate the target view with global memory. Extensive experiments are carried out on both categories-specific and category-agnostic benchmarks, and the results demonstrate that our MMNeRF achieves state-of-the-art neural rendering performance.

View this article on IEEE Xplore

 

Security Hardening of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks

Next-generation communication networks, also known as NextG or 5G and beyond, are the future data transmission systems that aim to connect a large amount of Internet of Things (IoT) devices, systems, applications, and consumers at high-speed data transmission and low latency. Fortunately, NextG networks can achieve these goals with advanced telecommunication, computing, and Artificial Intelligence (AI) technologies in the last decades and support a wide range of new applications. Among advanced technologies, AI has a significant and unique contribution to achieving these goals for beamforming, channel estimation, and Intelligent Reflecting Surfaces (IRS) applications of 5G and beyond networks. However, the security threats and mitigation for AI-powered applications in NextG networks have not been investigated deeply in academia and industry due to being new and more complicated. This paper focuses on an AI-powered IRS implementation in NextG networks along with its vulnerability against adversarial machine learning attacks. This paper also proposes the defensive distillation mitigation method to defend and improve the robustness of the AI-powered IRS model, i.e., reduce the vulnerability. The results indicate that the defensive distillation mitigation method can significantly improve the robustness of AI-powered models and their performance under an adversarial attack.

View this article on IEEE Xplore