Agent Architecture for Adaptive Behaviors in Autonomous Driving

Evolution has endowed animals with outstanding adaptive behaviours which are grounded in the organization of their sensorimotor system. This paper uses inspiration from these principles of organization in the design of an artificial agent for autonomous driving. After distilling the relevant principles from biology, their functional role in the implementation of an artificial system are explained. The resulting Agent, developed in an EU H2020 Research and Innovation Action, is used to concretely demonstrate the emergence of adaptive behaviour with a significant level of autonomy. Guidelines to adapt the same principled organization of the sensorimotor system to other agents for driving are also obtained. The demonstration of the system abilities is given with example scenarios and open access simulation tools. Prospective developments concerning learning via mental imagery are finally discussed.

View this article on IEEE Xplore

In-Bore Dynamic Measurement and Mechanism Analysis of Multi-Physics Environment for Electromagnetic Railguns

Electromagnetic launch technology has important applications in many fields. However, the extremely harsh multi-physics environment during the launch is quite different from that of conventional guns. Little experimental research studied the dynamic distribution of the extreme impact environment and magnetic fields in the projectile. To this end, this paper designs a projectile-borne storage testing system for the dynamic measurement of harsh multi-physics environments. The detailed assessment of the measured dynamic multi-physics field shows that the velocity skin effect (VSE) is an important factor affecting the dynamic results. It causes a higher current density in the armature, and the magnetic induction and acceleration in the dynamic experiment are lower than those in the static-based experiment and simulation. Moreover, it causes the concentrated heat on the trailing edge of the armature, which lead to the melt-wave erosion, even affects the movement of integrated projectile during launch. Furthermore, the physical mechanism behind these phenomenon is revealed, and the causes of muzzle velocity error are analyzed. In conclusion, a feasible, dynamic measurement method for multi-physics coupled environments is presented, which can provide references for follow-up modeling and simulation researches and promote the development of railguns.

Published in the IEEE Magnetics Society Section within IEEE Access.

View this article on IEEE Xplore