A Data Compression Strategy for the Efficient Uncertainty Quantification of Time-Domain Circuit Responses

This paper presents an innovative modeling strategy for the construction of efficient and compact surrogate models for the uncertainty quantification of time-domain responses of digital links. The proposed approach relies on a two-step methodology. First, the initial dataset of available training responses is compressed via principal component analysis (PCA). Then, the compressed dataset is used to train compact surrogate models for the reduced PCA variables using advanced techniques for uncertainty quantification and parametric macromodeling. Specifically, in this work sparse polynomial chaos expansion and least-square support-vector machine regression are used, although the proposed methodology is general and applicable to any surrogate modeling strategy. The preliminary compression allows limiting the number and complexity of the surrogate models, thus leading to a substantial improvement in the efficiency. The feasibility and performance of the proposed approach are investigated by means of two digital link designs with 54 and 115 uncertain parameters, respectively.

Published in the IEEE Electronics Packaging Society Section within IEEE Access.

View this article on IEEE Xplore


Network Representation Learning: From Traditional Feature Learning to Deep Learning

Network representation learning (NRL) is an effective graph analytics technique and promotes users to deeply understand the hidden characteristics of graph data. It has been successfully applied in many real-world tasks related to network science, such as social network data processing, biological information processing, and recommender systems. Deep Learning is a powerful tool to learn data features. However, it is non-trivial to generalize deep learning to graph-structured data since it is different from the regular data such as pictures having spatial information and sounds having temporal information. Recently, researchers proposed many deep learning-based methods in the area of NRL. In this survey, we investigate classical NRL from traditional feature learning method to the deep learning-based model, analyze relationships between them, and summarize the latest progress. Finally, we discuss open issues considering NRL and point out the future directions in this field.

View this article on IEEE Xplore