Data-Driven Modeling of Grid-Forming Inverter Dynamics Using Power Hardware-in-the-Loop Experimentation

Recently, there is rapid integration of power electronic converter (PECs) into the power grid. Most of these PECs are grid-following inverters, where weak grid operation becomes an issue. Research is now shifting focus to grid-forming (GFM) inverters, resembling synchronous generators. The shift towards converter-based generation necessitates accurate PEC models for assessing system dynamics that were previously ignored in conventional power systems. Data-driven modeling (DDM) techniques are becoming valuable tools for capturing the dynamic behavior of advanced control strategies for PECs. This paper proposes using power hardware-in-the-loop experiments to capture dynamic GFM data in the application of DDM techniques. Furthermore, the paper derives an analytical approach to obtaining a mathematical model of GFM inverter dynamics and compares it with the DDM. A square-chirp probing signal was employed to perturb the active and reactive power of the load inside an Opal-RT model. The dynamic response of the GFM inverter, including changes in frequency and voltage, was recorded. This data was then used in a system identification algorithm to derive the GFM DDMs. The effectiveness of DDM is cross-validated with an analytical approach through experimental simulation studies, and the goodness-of-fit for both approaches is compared. Both approaches show more than 85% accuracy in capturing the dynamic response of GFM inverters under different loading conditions.

View this article on IEEE Xplore


Machine Learning Based Transient Stability Emulation and Dynamic System Equivalencing of Large-Scale AC-DC Grids for Faster-Than-Real-Time Digital Twin

Modern power systems have been expanding significantly including the integration of high voltage direct current (HVDC) systems, bringing a tremendous computational challenge to transient stability simulation for dynamic security assessment (DSA). In this work, a practical method for energy control center with the machine learning (ML) based synchronous generator model (SGM) and dynamic equivalent model (DEM) is proposed to reduce the computational burden of the traditional transient stability (TS) simulation. The proposed ML-based models are deployed on the field programmable gate arrays (FPGAs) for faster-than-real-time (FTRT) digital twin hardware emulation of the real power system. The Gated Recurrent Unit (GRU) algorithm is adopted to train the SGM and DEM, where the training and testing datasets are obtained from the off-line simulation tool DSAToolsTM/TSAT®. A test system containing 15 ACTIVSg 500-bus systems interconnected by a 15-terminal DC grid is established for validating the accuracy of the proposed FTRT digital twin emulation platform. Due to the complexity of emulating large-scale AC-DC grid, multiple FPGA boards are applied, and a proper interface strategy is also proposed for data synchronization. As a result, the efficacy of the hardware emulation is demonstrated by two case studies, where an FTRT ratio of more than 684 is achieved by applying the GRU-SGM, while it reaches over 208 times for hybrid computational-ML based digital twin of AC-DC grid.

*Published in the IEEE Power & Energy Society Section within IEEE Access.

View this article on IEEE Xplore

 

Robust Stereo Visual SLAM for Dynamic Environments With Moving Object

The accuracy of localization and mapping of automated guided vehicles (AGVs) using visual simultaneous localization and mapping (SLAM) is significantly reduced in a dynamic environment compared to a static environment due to incorrect data association caused by dynamic objects. To solve this problem, a robust stereo SLAM algorithm based on dynamic region rejection is proposed. The algorithm first detects dynamic feature points from the fundamental matrix of consecutive frames and then divides the current frame into superpixels and labels its boundaries with disparity. Finally, dynamic regions are obtained from dynamic feature points and superpixel boundaries types; only the static area is used to estimate the pose to improve the localization accuracy and robustness of the algorithm. Experiments show that the proposed algorithm outperforms ORB-SLAM2 in the KITTI dataset, and the absolute trajectory error in the actual dynamic environment can be reduced by 84% compared with the conventional ORB-SLAM2, which can effectively improve the localization and mapping accuracy of AGVs in dynamic environments.

*Published in the IEEE Vehicular Technology Society Section within IEEE Access.

View this article on IEEE Xplore