How Practical Are Fault Injection Attacks, Really?

Fault injection attacks (FIA) are a class of active physical attacks, mostly used for malicious purposes such as extraction of cryptographic keys, privilege escalation, attacks on neural network implementations. There are many techniques that can be used to cause the faults in integrated circuits, many of them coming from the area of failure analysis. In this paper we tackle the topic of practicality of FIA. We analyze the most commonly used techniques that can be found in the literature, such as voltage/clock glitching, electromagnetic pulses, lasers, and Rowhammer attacks. To summarize, FIA can be mounted on most commonly used architectures from ARM, Intel, AMD, by utilizing injection devices that are often below the thousand dollar mark. Therefore, we believe these attacks can be considered practical in many scenarios, especially when the attacker can physically access the target device.

View this article on IEEE Xplore

 

A Cost-Effective 2-Channel OTDM System Implemented With Sinusoidally Modulated Light Source

We propose to implement a 2-channel optical-time-division-multiplexed (OTDM) system for short-reach optical interconnects by using a sinusoidally modulated light source instead of a complicated mode-locked laser as an input pulse source. In this system, the OTDM signal is obtained by bit-interleaving two optical return-to-zero (RZ) signals generated by using the sinusoidally modulated light. We operate these RZ signals in the orthogonal in-phase and quadrature domains to avoid the unwanted beat components. After the transmission, the OTDM signal is detected by using single photodetector, and then processed by a 2 × 2 multiple-input multiple-output equalizer. For a demonstration, we generate 150-Gb/s OTDM signal operating in the 8-level pulse-amplitude modulated (PAM-8) format by using commercial LiNbO 3 Mach-Zehnder modulators and transmit this OTDM signal over 1.9 km of the standard single-mode fiber (SSMF). In addition, we fabricate the proposed OTDM transmitter in an integrated silicon-photonics chip and use it to demonstrate the transmission of the 64-Gb/s OTDM PAM-4 signal over 2.2 km of SSMF.

Published in the IEEE Photonics Society Section within IEEE Access.

View this article on IEEE Xplore