Novel Multi Center and Threshold Ternary Pattern Based Method for Disease Detection Method Using Voice

Smart health is one of the most popular and important components of smart cities. It is a relatively new context-aware healthcare paradigm influenced by several fields of expertise, such as medical informatics, communications and electronics, bioengineering, ethics, to name a few. Smart health is used to improve healthcare by providing many services such as patient monitoring, early diagnosis of disease and so on. The artificial neural network (ANN), support vector machine (SVM) and deep learning models, especially the convolutional neural network (CNN), are the most commonly used machine learning approaches where they proved to be performance in most cases. Voice disorders are rapidly spreading especially with the development of medical diagnostic systems, although they are often underestimated. Smart health systems can be an easy and fast support to voice pathology detection. The identification of an algorithm that discriminates between pathological and healthy voices with more accuracy is needed to obtain a smart and precise mobile health system. The main contribution of this paper consists of proposing a multiclass-pathologic voice classification using a novel multileveled textural feature extraction with iterative feature selector. Our approach is a simple and efficient voice-based algorithm in which a multi-center and multi threshold based ternary pattern is used (MCMTTP). A more compact multileveled features are then obtained by sample-based discretization techniques and Neighborhood Component Analysis (NCA) is applied to select features iteratively. These features are finally integrated with MCMTTP to achieve an accurate voice-based features detection. Experimental results of six classifiers with three diagnostic diseases (frontal resection, cordectomy and spastic dysphonia) show that the fused features are more suitable for describing voice-based disease detection.

*Published in the IEEE Electronics Packaging Society Section within IEEE Access.

View this article on IEEE Xplore

 

Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment

COVID-19 outbreak has put the whole world in an unprecedented difficult situation bringing life around the world to a frightening halt and claiming thousands of lives. Due to COVID-19’s spread in 212 countries and territories and increasing numbers of infected cases and death tolls mounting to 5,212,172 and 334,915 (as of May 22 2020), it remains a real threat to the public health system. This paper renders a response to combat the virus through Artificial Intelligence (AI). Some Deep Learning (DL) methods have been illustrated to reach this goal, including Generative Adversarial Networks (GANs), Extreme Learning Machine (ELM), and Long/Short Term Memory (LSTM). It delineates an integrated bioinformatics approach in which different aspects of information from a continuum of structured and unstructured data sources are put together to form the user-friendly platforms for physicians and researchers. The main advantage of these AI-based platforms is to accelerate the process of diagnosis and treatment of the COVID-19 disease. The most recent related publications and medical reports were investigated with the purpose of choosing inputs and targets of the network that could facilitate reaching a reliable Artificial Neural Network-based tool for challenges associated with COVID-19. Furthermore, there are some specific inputs for each platform, including various forms of the data, such as clinical data and medical imaging which can improve the performance of the introduced approaches toward the best responses in practical applications.

View this article on IEEE Xplore

Deep Learning Applications in Medical Image Analysis

 

The tremendous success of machine learning algorithms at image recognition tasks in recent years intersects with a time of dramatically increased use of electronic medical records and diagnostic imaging. This review introduces the machine learning algorithms as applied to medical image analysis, focusing on convolutional neural networks, and emphasizing clinical aspects of the field. The advantage of machine learning in an era of medical big data is that significant hierarchal relationships within the data can be discovered algorithmically without laborious hand-crafting of features. We cover key research areas and applications of medical image classification, localization, detection, segmentation, and registration. We conclude by discussing research obstacles, emerging trends, and possible future directions.

View this article on IEEE Xplore