Chat2VIS: Generating Data Visualizations via Natural Language Using ChatGPT, Codex and GPT-3 Large Language Models

The field of data visualisation has long aimed to devise solutions for generating visualisations directly from natural language text. Research in Natural Language Interfaces (NLIs) has contributed towards the development of such techniques. However, the implementation of workable NLIs has always been challenging due to the inherent ambiguity of natural language, as well as in consequence of unclear and poorly written user queries which pose problems for existing language models in discerning user intent. Instead of pursuing the usual path of developing new iterations of language models, this study uniquely proposes leveraging the advancements in pre-trained large language models (LLMs) such as ChatGPT and GPT-3 to convert free-form natural language directly into code for appropriate visualisations. This paper presents a novel system, Chat2VIS, which takes advantage of the capabilities of LLMs and demonstrates how, with effective prompt engineering, the complex problem of language understanding can be solved more efficiently, resulting in simpler and more accurate end-to-end solutions than prior approaches. Chat2VIS shows that LLMs together with the proposed prompts offer a reliable approach to rendering visualisations from natural language queries, even when queries are highly misspecified and underspecified. This solution also presents a significant reduction in costs for the development of NLI systems, while attaining greater visualisation inference abilities compared to traditional NLP approaches that use hand-crafted grammar rules and tailored models. This study also presents how LLM prompts can be constructed in a way that preserves data security and privacy while being generalisable to different datasets. This work compares the performance of GPT-3, Codex and ChatGPT across several case studies and contrasts the performances with prior studies.

View this article on IEEE Xplore

 

Analysing Recovery From Pandemics by Learning Theory: The Case of CoVid-19

We present a method for predicting the recovery time from infectious diseases outbreaks such as the recent CoVid-19 virus. The approach is based on the theory of learning from errors, specifically adapted to the control of the virus spread by reducing infection rates using countermeasures such as medical treatment, isolation, social distancing etc. When these are effective, the infection rate, after reaching a peak, declines following what we call the Universal Recovery Curve. We use presently available data from many countries to make actual predictions of the recovery trend and time needed for securing minimum infection rates in the future. We claim that the trend of decline is direct evidence of learning about risk reduction, also in this case of the pandemic.

*Published in the IEEE Engineering in Medicine and Biology Society Section within IEEE Access.

View this article on IEEE Xplore