Efficiency Optimization Design That Considers Control of Interior Permanent Magnet Synchronous Motors Based on Machine Learning for Automotive Application

Interior permanent magnet synchronous motors have become widely used as traction motors in environmentally friendly vehicles. Interior permanent magnet synchronous motors have a high degree of design freedom and time-consuming finite element analysis is required for their characteristics analysis, which results in a long design period. Here, we propose a method for fast efficiency maximization design that uses a machine-learning-based surrogate model. The surrogate model predicts motor parameters and iron loss with the same accuracy as that of finite element analysis but in a much shorter time. Furthermore, using the current and speed conditions in addition to geometry information as input to the surrogate model enables design optimization that considers motor control. The proposed method completed multi-objective multi-constraint optimization for multi-dimensional geometric parameters, which is prohibitively time-consuming using finite element analysis, in a few hours. The proposed shapes reduced losses under a vehicle test cycle compared with the initial shape. The proposed method was applied to motors with three rotor topologies to verify its generality.

View this article on IEEE Xplore

Published in the IEEE Vehicular Technology Society Section

Nanoflowers Versus Magnetosomes: Comparison Between Two Promising Candidates for Magnetic Hyperthermia Therapy

Magnetic Fluid Hyperthermia mediated by iron oxide nanoparticles is one of the most promising therapies for cancer treatment. Among the different candidates, magnetite and maghemite nanoparticles have revealed to be some of the most promising candidates due to both their performance and their biocompatibility. Nonetheless, up to date, the literature comparing the heating efficiency of magnetite and maghemite nanoparticles of similar size is scarce. To fill this gap, here we provide a comparison between commercial Synomag Nanoflowers (pure maghemite) and bacterial magnetosomes (pure magnetite) synthesized by the magnetotactic bacterium Magnetospirillum gryphiswaldense of ⟨D⟩≈ 40 –45 nm. Both types of nanoparticles exhibit a high degree of crystallinity and an excellent degree of chemical purity and stability. The structural and magnetic properties in both nanoparticle ensembles have been studied by means of X–Ray Diffraction, Transmission Electron Microscopy, X–Ray Absorption Spectroscopy, and SQUID magnetometry. The heating efficiency has been analyzed in both systems using AC magnetometry at several field amplitudes (0–88 mT) and frequencies (130, 300, and 530 kHz).

View this article on IEEE Xplore

Published in the IEEE Magnetics Society Section.

Nanoflowers Versus Magnetosomes: Comparison Between Two Promising Candidates for Magnetic Hyperthermia Therapy

Magnetic Fluid Hyperthermia mediated by iron oxide nanoparticles is one of the most promising therapies for cancer treatment. Among the different candidates, magnetite and maghemite nanoparticles have revealed to be some of the most promising candidates due to both their performance and their biocompatibility. Nonetheless, up to date, the literature comparing the heating efficiency of magnetite and maghemite nanoparticles of similar size is scarce. To fill this gap, here we provide a comparison between commercial Synomag Nanoflowers (pure maghemite) and bacterial magnetosomes (pure magnetite) synthesized by the magnetotactic bacterium Magnetospirillum gryphiswaldense of ⟨D⟩≈ 40 –45 nm. Both types of nanoparticles exhibit a high degree of crystallinity and an excellent degree of chemical purity and stability. The structural and magnetic properties in both nanoparticle ensembles have been studied by means of X–Ray Diffraction, Transmission Electron Microscopy, X–Ray Absorption Spectroscopy, and SQUID magnetometry. The heating efficiency has been analyzed in both systems using AC magnetometry at several field amplitudes (0–88 mT) and frequencies (130, 300, and 530 kHz).

Published in the IEEE Magnetics Society Section within IEEE Access.

View this article on IEEE Xplore