An Experimental-Based Review of Image Enhancement and Image Restoration Methods for Underwater Imaging

Underwater images play a key role in ocean exploration but often suffer from severe quality degradation due to light absorption and scattering in water medium. Although major breakthroughs have been made recently in the general area of image enhancement and restoration, the applicability of new methods for improving the quality of underwater images has not specifically been captured. In this paper, we review the image enhancement and restoration methods that tackle typical underwater image impairments, including some extreme degradations and distortions. First, we introduce the key causes of quality reduction in underwater images, in terms of the underwater image formation model (IFM). Then, we review underwater restoration methods, considering both the IFM-free and the IFM-based approaches. Next, we present an experimental-based comparative evaluation of the state-of-the-art IFM-free and IFM-based methods, considering also the prior-based parameter estimation algorithms of the IFM-based methods, using both subjective and objective analyses (the used code is freely available at Starting from this paper, we pinpoint the key shortcomings of existing methods, drawing recommendations for future research in this area. Our review of underwater image enhancement and restoration provides researchers with the necessary background to appreciate challenges and opportunities in this important field.

View this article on IEEE Xplore


Novel Multi Center and Threshold Ternary Pattern Based Method for Disease Detection Method Using Voice

Smart health is one of the most popular and important components of smart cities. It is a relatively new context-aware healthcare paradigm influenced by several fields of expertise, such as medical informatics, communications and electronics, bioengineering, ethics, to name a few. Smart health is used to improve healthcare by providing many services such as patient monitoring, early diagnosis of disease and so on. The artificial neural network (ANN), support vector machine (SVM) and deep learning models, especially the convolutional neural network (CNN), are the most commonly used machine learning approaches where they proved to be performance in most cases. Voice disorders are rapidly spreading especially with the development of medical diagnostic systems, although they are often underestimated. Smart health systems can be an easy and fast support to voice pathology detection. The identification of an algorithm that discriminates between pathological and healthy voices with more accuracy is needed to obtain a smart and precise mobile health system. The main contribution of this paper consists of proposing a multiclass-pathologic voice classification using a novel multileveled textural feature extraction with iterative feature selector. Our approach is a simple and efficient voice-based algorithm in which a multi-center and multi threshold based ternary pattern is used (MCMTTP). A more compact multileveled features are then obtained by sample-based discretization techniques and Neighborhood Component Analysis (NCA) is applied to select features iteratively. These features are finally integrated with MCMTTP to achieve an accurate voice-based features detection. Experimental results of six classifiers with three diagnostic diseases (frontal resection, cordectomy and spastic dysphonia) show that the fused features are more suitable for describing voice-based disease detection.

*Published in the IEEE Electronics Packaging Society Section within IEEE Access.

View this article on IEEE Xplore