EXplainable Artificial Intelligence (XAI)—From Theory to Methods and Applications

Intelligent applications supported by Machine Learning have achieved remarkable performance rates for a wide range of tasks in many domains. However, understanding why a trained algorithm makes a particular decision remains problematic. Given the growing interest in the application of learning-based models, some concerns arise in the dealing with sensible environments, which may impact users’ lives. The complex nature of those models’ decision mechanisms makes them the so-called “black boxes,” in which the understanding of the logic behind automated decision-making processes by humans is not trivial. Furthermore, the reasoning that leads a model to provide a specific prediction can be more important than performance metrics, which introduces a trade-off between interpretability and model accuracy. Explaining intelligent computer decisions can be regarded as a way to justify their reliability and establish trust. In this sense, explanations are critical tools that verify predictions to discover errors and biases previously hidden within the models’ complex structures, opening up vast possibilities for more responsible applications. In this review, we provide theoretical foundations of Explainable Artificial Intelligence (XAI), clarifying diffuse definitions and identifying research objectives, challenges, and future research lines related to turning opaque machine learning outputs into more transparent decisions. We also present a careful overview of the state-of-the-art explainability approaches, with a particular analysis of methods based on feature importance, such as the well-known LIME and SHAP. As a result, we highlight practical applications of the successful use of XAI.

View this article on IEEE Xplore