A Metaverse: Taxonomy, Components, Applications, and Open Challenges

Unlike previous studies on the Metaverse based on Second Life, the current Metaverse is based on the social value of Generation Z that online and offline selves are not different. With the technological development of deep learning-based high-precision recognition models and natural generation models, Metaverse is being strengthened with various factors, from mobile-based always-on access to connectivity with reality using virtual currency. The integration of enhanced social activities and neural-net methods requires a new definition of Metaverse suitable for the present, different from the previous Metaverse. This paper divides the concepts and essential techniques necessary for realizing the Metaverse into three components (i.e., hardware, software, and contents) and three approaches (i.e., user interaction, implementation, and application) rather than marketing or hardware approach to conduct a comprehensive analysis. Furthermore, we describe essential methods based on three components and techniques to Metaverse’s representative Ready Player One, Roblox, and Facebook research in the domain of films, games, and studies. Finally, we summarize the limitations and directions for implementing the immersive Metaverse as social influences, constraints, and open challenges.

View this article on IEEE Xplore

 

Autonomous Detection and Deterrence of Pigeons on Buildings by Drones

Pigeons may transmit diseases to humans and cause damages to buildings, monuments, and other infrastructure. Therefore, several control strategies have been developed, but they have been found to be either ineffective or harmful to animals and often depend on human operation. This study proposes a system capable of autonomously detecting and deterring pigeons on building roofs using a drone. The presence and position of pigeons were detected in real time by a neural network using images taken by a video camera located on the roof. Moreover, a drone was utilized to deter the animals. Field experiments were conducted in a real-world urban setting to assess the proposed system by comparing the number of animals and their stay durations for over five days against the 21-day-trial experiment without the drone. During the five days of experiments, the drone was automatically deployed 55 times and was significantly effective in reducing the number of birds and their stay durations without causing any harm to them. In conclusion, this study has proven the effectiveness of this system in deterring birds, and this approach can be seen as a fully autonomous alternative to the already existing methods.

View this article on IEEE Xplore

 

LiveBox: A Self-Adaptive Forensic-Ready Service for Drones

 

Unmanned Aerial Vehicles (UAVs), or drones, are increasingly expected to operate in spaces populated by humans while avoiding injury to people or damaging property. However, incidents and accidents can, and increasingly do, happen. Traditional investigations of aircraft incidents require on-board flight data recorders (FDRs); however, these physical FDRs only work if the drone can be recovered. A further complication is that physical FDRs are too heavy to mount on light drones, hence not suitable for forensic digital investigations of drone flights. In this paper, we propose a self-adaptive software architecture, LiveBox, to make drones both forensic-ready and regulation compliant. We studied the feasibility of using distributed technologies for implementing the LiveBox reference architecture. In particular, we found that updates and queries of drone flight data and constraints can be treated as transactions using decentralised ledger technology (DLT), rather than a generic time-series database, to satisfy forensic tamper-proof requirements. However, DLTs such as Ethereum, have limits on throughput (i.e. transactions-per-second), making it harder to achieve regulation-compliance at runtime. To overcome this limitation, we present a self-adaptive reporting algorithm to dynamically reduce the precision of flight data without sacrificing the accuracy of runtime verification. Using a real-life scenario of drone delivery, we show that our proposed algorithm achieves a 46% reduction in bandwidth without losing accuracy in satisfying both tamper-proof and regulation-compliant requirements.

View this article on IEEE Xplore