Transmission Failure Prediction Using AI and Structural Modeling Informed by Distribution Outages
Understanding and quantifying the impact of severe weather events on the electric transmission and distribution system is crucial for ensuring its resilience in the context of the increasing frequency and intensity of extreme weather events caused by climate change. While weather impact models for the distribution system have been widely developed during the past decade, transmission system impact models lagged behind because of the scarcity of data. This study demonstrates a weather impact model for predicting the probability of failure of transmission lines. It builds upon a recently developed model and focuses on reducing model bias, through multi-model integration, feature engineering, and the development of a storm index that leverages distribution system data to aid the prediction of transmission risk. We explored three methods for integrating machine learning with mechanistic models. They consist of: (a) creating a linear combination of the outputs of the two modeling approaches, (b) including fragility curves as additional inputs to machine learning models, and (c) developing a new machine learning model that uses the outputs of the weather-based machine learning model, fragility curve estimates, and wind data to make new predictions. Moreover, due to the limited number of historical failures in transmission networks, a storm index was developed leveraging a dataset of distribution outages to learn about storm behavior to improve model skills. In the current version of the model, we substantially reduced the overestimation in the sum of predicted values of transmission line probability of failure that was present in the previously published model by a factor of 10. This has led to a reduction of model bias from 3352% to 14.46–15.43%. The model with the integrated approach and storm index demonstrates substantial improvements in the estimation of the probability of failure of transmission lines and their ranking by risk level. The improved model is able to capture 60% of the failures within the top 22.5% of the ranked power lines, compared to a value of 34.9% for the previous model. With an estimate of the probability of failure of transmission lines ahead of storms, power system planning and maintenance engineers will have critical information to make informed decisions, to create better mitigation plans and minimize power disruptions. Long term, this model can assist with resilience investments as it highlights areas of the system more susceptible to damage.
View this article on IEEE Xplore
Contrastive Self-Supervised Learning for Globally Distributed Landslide Detection
The Remote Sensing (RS) field continuously grapples with the challenge of transforming satellite data into actionable information. This ongoing issue results in an ever-growing accumulation of unlabeled data, complicating interpretation efforts. The situation becomes even more challenging when satellite data must be used immediately to identify the effects of a natural hazard. Self-supervised learning (SSL) offers a promising approach for learning image representations without labeled data. Once trained, an SSL model can address various tasks with significantly reduced requirements for labeled data. Despite advancements in SSL models, particularly those using contrastive learning methods like MoCo, SimCLR, and SwAV, their potential remains largely unexplored in the context of instance segmentation and semantic segmentation of satellite imagery. This study integrates SwAV within an auto-encoder framework to detect landslides using deca-metric resolution multi-spectral images from the globally-distributed large-scale landslide4sense (L4S) 2022 benchmark dataset, employing only 1% and 10% of the labeled data. Our proposed SSL auto-encoder model features two modules: SwAV, which assigns features to prototype vectors to generate encoder codes, and ResNets, serving as the decoder for the downstream task. With just 1% of labeled data, our SSL model performs comparably to ten state-of-the-art deep learning segmentation models that utilize 100% of the labeled data in a fully supervised manner. With 10% of labeled data, our SSL model outperforms all ten fully supervised counterparts trained with 100% of the labeled data.
View this article on IEEE Xplore
Cross Domain Early Crop Mapping Using CropSTGAN
Driven by abundant satellite imagery, machine learning-based approaches have recently been promoted to generate high-resolution crop cultivation maps to support many agricultural applications. One of the major challenges faced by these approaches is the limited availability of ground truth labels. In the absence of ground truth, existing work usually adopts the “direct transfer strategy” that trains a classifier using historical labels collected from other regions and then applies the trained model to the target region. Unfortunately, the spectral features of crops exhibit inter-region and inter-annual variability due to changes in soil composition, climate conditions, and crop progress, the resultant models perform poorly on new and unseen regions or years. Despite recent efforts, such as the application of the deep adaptation neural network (DANN) model structure in the deep adaptation crop classification network (DACCN), to tackle the above cross-domain challenges, their effectiveness diminishes significantly when there is a large dissimilarity between the source and target regions. This paper introduces the Crop Mapping Spectral-temporal Generative Adversarial Neural Network (CropSTGAN), a novel solution for cross-domain challenges, that doesn’t require target domain labels. CropSTGAN learns to transform the target domain’s spectral features to those of the source domain, effectively bridging large dissimilarities. Additionally, it employs an identity loss to maintain the intrinsic local structure of the data. Comprehensive experiments across various regions and years demonstrate the benefits and effectiveness of the proposed approach. In experiments, CropSTGAN is benchmarked against various state-of-the-art (SOTA) methods. Notably, CropSTGAN significantly outperforms these methods in scenarios with large data distribution dissimilarities between the target and source domains.
View this article on IEEE Xplore
Effect of Data Characteristics Inconsistency on Medium and Long-Term Runoff Forecasting by Machine Learning
In the application of medium and long-term runoff forecasting, machine learning has some problems, such as high learning cost, limited computing cost, and difficulty in satisfying statistical data assumptions in some regions, leading to difficulty in popularization in the hydrology industry. In the case of a few data, it is one of the ways to solve the problem to analyze the data characteristics consistency. This paper analyzes the statistical hypothesis of machine learning and runoff data characteristics such as periodicity and mutation. Aiming at the effect of data characteristics inconsistency on three representative machine learning models (multiple linear regression, random forest, back propagation neural network), a simple correction/improvement method suitable for engineering was proposed. The model results were verified in the Danjiangkou area, China. The results show that the errors of the three models have the same distribution as the periodic characteristics of the runoff periods, and the correction/improvement based on periodicity and mutation characteristics can improve the forecasting accuracy of the three models. The back propagation neural network model is most sensitive to the data characteristics consistency.
View this article on IEEE Xplore
Accuracy Enhancement of Hand Gesture Recognition Using CNN
Human gestures are immensely significant in human-machine interactions. Complex hand gesture input and noise caused by the external environment must be addressed in order to improve the accuracy of hand gesture recognition algorithms. To overcome this challenge, we employ a combination of 2D-FFT and convolutional neural networks (CNN) in this research. The accuracy of human-machine interactions is improved by using Ultra Wide Bandwidth (UWB) radar to acquire image data, then transforming it with 2D-FFT and bringing it into CNN for classification. The classification results of the proposed method revealed that it required less time to learn than prominent models and had similar accuracy.
View this article on IEEE Xplore
Chat2VIS: Generating Data Visualizations via Natural Language Using ChatGPT, Codex and GPT-3 Large Language Models
The field of data visualisation has long aimed to devise solutions for generating visualisations directly from natural language text. Research in Natural Language Interfaces (NLIs) has contributed towards the development of such techniques. However, the implementation of workable NLIs has always been challenging due to the inherent ambiguity of natural language, as well as in consequence of unclear and poorly written user queries which pose problems for existing language models in discerning user intent. Instead of pursuing the usual path of developing new iterations of language models, this study uniquely proposes leveraging the advancements in pre-trained large language models (LLMs) such as ChatGPT and GPT-3 to convert free-form natural language directly into code for appropriate visualisations. This paper presents a novel system, Chat2VIS, which takes advantage of the capabilities of LLMs and demonstrates how, with effective prompt engineering, the complex problem of language understanding can be solved more efficiently, resulting in simpler and more accurate end-to-end solutions than prior approaches. Chat2VIS shows that LLMs together with the proposed prompts offer a reliable approach to rendering visualisations from natural language queries, even when queries are highly misspecified and underspecified. This solution also presents a significant reduction in costs for the development of NLI systems, while attaining greater visualisation inference abilities compared to traditional NLP approaches that use hand-crafted grammar rules and tailored models. This study also presents how LLM prompts can be constructed in a way that preserves data security and privacy while being generalisable to different datasets. This work compares the performance of GPT-3, Codex and ChatGPT across several case studies and contrasts the performances with prior studies.
View this article on IEEE Xplore
Security Hardening of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks
Next-generation communication networks, also known as NextG or 5G and beyond, are the future data transmission systems that aim to connect a large amount of Internet of Things (IoT) devices, systems, applications, and consumers at high-speed data transmission and low latency. Fortunately, NextG networks can achieve these goals with advanced telecommunication, computing, and Artificial Intelligence (AI) technologies in the last decades and support a wide range of new applications. Among advanced technologies, AI has a significant and unique contribution to achieving these goals for beamforming, channel estimation, and Intelligent Reflecting Surfaces (IRS) applications of 5G and beyond networks. However, the security threats and mitigation for AI-powered applications in NextG networks have not been investigated deeply in academia and industry due to being new and more complicated. This paper focuses on an AI-powered IRS implementation in NextG networks along with its vulnerability against adversarial machine learning attacks. This paper also proposes the defensive distillation mitigation method to defend and improve the robustness of the AI-powered IRS model, i.e., reduce the vulnerability. The results indicate that the defensive distillation mitigation method can significantly improve the robustness of AI-powered models and their performance under an adversarial attack.
View this article on IEEE Xplore
Tool Wear Monitoring Based on Transfer Learning and Improved Deep Residual Network
Considering the complex structure weight of the existing tool wear state monitoring model based on deep learning, prone to over-fitting and requiring a large amount of training data, a monitoring method based on Transfer Learning and Improved Deep Residual Network is proposed. First, the data is preprocessed, one-dimensional cutting force data are transformed into two-dimensional spectrum by wavelet transform. Then, the Improved Deep Residual Network is built and the residual module structure is optimized. The Dropout layer is introduced and the global average pooling technique is used instead of the fully connected layer. Finally, the Improved Deep Residual Network is used as the pre-training network model and the tool wear state monitoring model combined with the model-based Transfer Learning method is constructed. The results show that the accuracy of the proposed monitoring method is up to 99.74%. The presented network model has the advantages of simple structure, small number of parameters, good robustness and reliability. The ideal classification effect can be achieved with fewer iterations.
View this article on IEEE Xplore
On Online Adaptive Direct Data Driven Control
Based on our recent contributions on direct data driven control scheme, this paper continues to do some new research on direct data driven control, paving another way for latter future work on advanced control theory. Firstly, adaptive idea is combined with direct data driven control, one parameter adjustment mechanism is constructed to design the parameterized controller online. Secondly, to show the input-output property for the considered closed loop system, passive analysis is studied to be similar with stability. Thirdly, to validate whether the designed controller is better or not, another safety controller modular is added to achieve the designed or expected control input with the essence of model predictive control. Finally, one simulation example confirms our proposed theories. More generally, this paper studies not only the controller design and passive analysis, but also some online algorithm, such as recursive parameter identification and online subgradient descent algorithm. Furthermore, safety controller modular is firstly introduced in direct data driven control scheme.
View this article on IEEE Xplore
Dynamic Network Slice Scaling Assisted by Attention-Based Prediction in 5G Core Network
Network slicing is a key technology in fifth-generation (5G) networks that allows network operators to create multiple logical networks over a shared physical infrastructure to meet the requirements of diverse use cases. Among core functions to implement network slicing, resource management and scaling are difficult challenges. Network operators must ensure the Service Level Agreement (SLA) requirements for latency, bandwidth, resources, etc for each network slice while utilizing the limited resources efficiently, i.e., optimal resource assignment and dynamic resource scaling for each network slice. Existing resource scaling approaches can be classified into reactive and proactive types. The former makes a resource scaling decision when the resource usage of virtual network functions (VNFs) exceeds a predefined threshold, and the latter forecasts the future resource usage of VNFs in network slices by utilizing classical statistical models or deep learning models. However, both have a trade-off between assurance and efficiency. For instance, the lower threshold in the reactive approach or more marginal prediction in the proactive approach can meet the requirements more certainly, but it may cause unnecessary resource wastage. To overcome the trade-off, we first propose a novel and efficient proactive resource forecasting algorithm. The proposed algorithm introduces an attention-based encoder-decoder model for multivariate time series forecasting to achieve high short-term and long-term prediction accuracies. It helps network slices be scaled up and down effectively and reduces the costs of SLA violations and resource overprovisioning. Using the attention mechanism, the model attends to every hidden state of the sequential input at every time step to select the most important time steps affecting the prediction results. We also designed an automated resource configuration mechanism responsible for monitoring resources and automatically adding or removing VNF instances.
View this article on IEEE Xplore
Follow us: