Security Hardening of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks

Next-generation communication networks, also known as NextG or 5G and beyond, are the future data transmission systems that aim to connect a large amount of Internet of Things (IoT) devices, systems, applications, and consumers at high-speed data transmission and low latency. Fortunately, NextG networks can achieve these goals with advanced telecommunication, computing, and Artificial Intelligence (AI) technologies in the last decades and support a wide range of new applications. Among advanced technologies, AI has a significant and unique contribution to achieving these goals for beamforming, channel estimation, and Intelligent Reflecting Surfaces (IRS) applications of 5G and beyond networks. However, the security threats and mitigation for AI-powered applications in NextG networks have not been investigated deeply in academia and industry due to being new and more complicated. This paper focuses on an AI-powered IRS implementation in NextG networks along with its vulnerability against adversarial machine learning attacks. This paper also proposes the defensive distillation mitigation method to defend and improve the robustness of the AI-powered IRS model, i.e., reduce the vulnerability. The results indicate that the defensive distillation mitigation method can significantly improve the robustness of AI-powered models and their performance under an adversarial attack.

View this article on IEEE Xplore

 

Machine Learning Based Transient Stability Emulation and Dynamic System Equivalencing of Large-Scale AC-DC Grids for Faster-Than-Real-Time Digital Twin

Modern power systems have been expanding significantly including the integration of high voltage direct current (HVDC) systems, bringing a tremendous computational challenge to transient stability simulation for dynamic security assessment (DSA). In this work, a practical method for energy control center with the machine learning (ML) based synchronous generator model (SGM) and dynamic equivalent model (DEM) is proposed to reduce the computational burden of the traditional transient stability (TS) simulation. The proposed ML-based models are deployed on the field programmable gate arrays (FPGAs) for faster-than-real-time (FTRT) digital twin hardware emulation of the real power system. The Gated Recurrent Unit (GRU) algorithm is adopted to train the SGM and DEM, where the training and testing datasets are obtained from the off-line simulation tool DSAToolsTM/TSAT®. A test system containing 15 ACTIVSg 500-bus systems interconnected by a 15-terminal DC grid is established for validating the accuracy of the proposed FTRT digital twin emulation platform. Due to the complexity of emulating large-scale AC-DC grid, multiple FPGA boards are applied, and a proper interface strategy is also proposed for data synchronization. As a result, the efficacy of the hardware emulation is demonstrated by two case studies, where an FTRT ratio of more than 684 is achieved by applying the GRU-SGM, while it reaches over 208 times for hybrid computational-ML based digital twin of AC-DC grid.

*Published in the IEEE Power & Energy Society Section within IEEE Access.

View this article on IEEE Xplore

 

The Internet of Federated Things (IoFT)

The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the “cloud” will be substituted by the “crowd” where model training is brought to the edge, allowing IoT devices to collaboratively extract knowledge and build smart analytics/models while keeping their personal data stored locally. This paradigm shift was set into motion by the tremendous increase in computational power on IoT devices and the recent advances in decentralized and privacy-preserving model training, coined as federated learning (FL). This article provides a vision for IoFT and a systematic overview of current efforts towards realizing this vision. Specifically, we first introduce the defining characteristics of IoFT and discuss FL data-driven approaches, opportunities, and challenges that allow decentralized inference within three dimensions: (i) a global model that maximizes utility across all IoT devices, (ii) a personalized model that borrows strengths across all devices yet retains its own model, (iii) a meta-learning model that quickly adapts to new devices or learning tasks. We end by describing the vision and challenges of IoFT in reshaping different industries through the lens of domain experts. Those industries include manufacturing, transportation, energy, healthcare, quality & reliability, business, and computing.

View this article on IEEE Xplore

 

A Data Compression Strategy for the Efficient Uncertainty Quantification of Time-Domain Circuit Responses

This paper presents an innovative modeling strategy for the construction of efficient and compact surrogate models for the uncertainty quantification of time-domain responses of digital links. The proposed approach relies on a two-step methodology. First, the initial dataset of available training responses is compressed via principal component analysis (PCA). Then, the compressed dataset is used to train compact surrogate models for the reduced PCA variables using advanced techniques for uncertainty quantification and parametric macromodeling. Specifically, in this work sparse polynomial chaos expansion and least-square support-vector machine regression are used, although the proposed methodology is general and applicable to any surrogate modeling strategy. The preliminary compression allows limiting the number and complexity of the surrogate models, thus leading to a substantial improvement in the efficiency. The feasibility and performance of the proposed approach are investigated by means of two digital link designs with 54 and 115 uncertain parameters, respectively.

Published in the IEEE Electronics Packaging Society Section within IEEE Access.

View this article on IEEE Xplore

 

A Simple Sum of Products Formula to Compute the Reliability of the KooN System

Reliability block diagram (RBD) is a well-known, high-level abstract modeling method for calculating systems reliability. Increasing redundancy is the most important way for increasing Fault-tolerance and reliability of dependable systems. K-out-of-N (KooN) is one of the known redundancy models. The redundancy causes repeated events and increases the complexity of the computing system’s reliability, and researchers use techniques like factorization to overcome it. Current methods lead to the cumbersome formula that needs a lot of simplification to change in the form of Sum of the Products (SoP) in terms of reliabilities of its constituting components. In This paper, a technique for extracting simple formula for calculating the KooN system’s reliability in SoP form using the Venn diagram is presented. Then, the shortcoming of using the Venn diagram that is masking some joints events in the case of a large number of independent components is explained. We proposed the replacement of Lattice instead of Venn diagrams to overcome this weakness. Then, the Lattice of reliabilities that is dual of power set Lattice of components is introduced. Using the basic properties of Lattice of reliabilities and their inclusion relationships, we propose an algorithm for driving a general formula of the KooN system’s reliability in SoP form. The proposed algorithm gives the SoP formula coefficients by computing elements of the main diagonal and elements below it in a squared matrix. The computational and space complexity of the proposed algorithm is θ ((n – k) 2 /2) that n is the number of different components and k denotes the number of functioning components. A lemma and a theorem are defined and proved as a basis of the proposed general formula for computing coefficients of the SoP formula of the KooN system. Computational and space complexity of computing all of the coefficients of reliability formula of KooN system using this formula reduced to $\theta (n-k)$ . The proposed formula is simple and is in the form of SoP, and its computation is less error-prone.

View this article on IEEE Xplore