The Internet of Federated Things (IoFT)

The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the “cloud” will be substituted by the “crowd” where model training is brought to the edge, allowing IoT devices to collaboratively extract knowledge and build smart analytics/models while keeping their personal data stored locally. This paradigm shift was set into motion by the tremendous increase in computational power on IoT devices and the recent advances in decentralized and privacy-preserving model training, coined as federated learning (FL). This article provides a vision for IoFT and a systematic overview of current efforts towards realizing this vision. Specifically, we first introduce the defining characteristics of IoFT and discuss FL data-driven approaches, opportunities, and challenges that allow decentralized inference within three dimensions: (i) a global model that maximizes utility across all IoT devices, (ii) a personalized model that borrows strengths across all devices yet retains its own model, (iii) a meta-learning model that quickly adapts to new devices or learning tasks. We end by describing the vision and challenges of IoFT in reshaping different industries through the lens of domain experts. Those industries include manufacturing, transportation, energy, healthcare, quality & reliability, business, and computing.

View this article on IEEE Xplore


A Data Compression Strategy for the Efficient Uncertainty Quantification of Time-Domain Circuit Responses

This paper presents an innovative modeling strategy for the construction of efficient and compact surrogate models for the uncertainty quantification of time-domain responses of digital links. The proposed approach relies on a two-step methodology. First, the initial dataset of available training responses is compressed via principal component analysis (PCA). Then, the compressed dataset is used to train compact surrogate models for the reduced PCA variables using advanced techniques for uncertainty quantification and parametric macromodeling. Specifically, in this work sparse polynomial chaos expansion and least-square support-vector machine regression are used, although the proposed methodology is general and applicable to any surrogate modeling strategy. The preliminary compression allows limiting the number and complexity of the surrogate models, thus leading to a substantial improvement in the efficiency. The feasibility and performance of the proposed approach are investigated by means of two digital link designs with 54 and 115 uncertain parameters, respectively.

Published in the IEEE Electronics Packaging Society Section within IEEE Access.

View this article on IEEE Xplore


A Simple Sum of Products Formula to Compute the Reliability of the KooN System

Reliability block diagram (RBD) is a well-known, high-level abstract modeling method for calculating systems reliability. Increasing redundancy is the most important way for increasing Fault-tolerance and reliability of dependable systems. K-out-of-N (KooN) is one of the known redundancy models. The redundancy causes repeated events and increases the complexity of the computing system’s reliability, and researchers use techniques like factorization to overcome it. Current methods lead to the cumbersome formula that needs a lot of simplification to change in the form of Sum of the Products (SoP) in terms of reliabilities of its constituting components. In This paper, a technique for extracting simple formula for calculating the KooN system’s reliability in SoP form using the Venn diagram is presented. Then, the shortcoming of using the Venn diagram that is masking some joints events in the case of a large number of independent components is explained. We proposed the replacement of Lattice instead of Venn diagrams to overcome this weakness. Then, the Lattice of reliabilities that is dual of power set Lattice of components is introduced. Using the basic properties of Lattice of reliabilities and their inclusion relationships, we propose an algorithm for driving a general formula of the KooN system’s reliability in SoP form. The proposed algorithm gives the SoP formula coefficients by computing elements of the main diagonal and elements below it in a squared matrix. The computational and space complexity of the proposed algorithm is θ ((n – k) 2 /2) that n is the number of different components and k denotes the number of functioning components. A lemma and a theorem are defined and proved as a basis of the proposed general formula for computing coefficients of the SoP formula of the KooN system. Computational and space complexity of computing all of the coefficients of reliability formula of KooN system using this formula reduced to $\theta (n-k)$ . The proposed formula is simple and is in the form of SoP, and its computation is less error-prone.

View this article on IEEE Xplore