An Experimental-Based Review of Image Enhancement and Image Restoration Methods for Underwater Imaging

Underwater images play a key role in ocean exploration but often suffer from severe quality degradation due to light absorption and scattering in water medium. Although major breakthroughs have been made recently in the general area of image enhancement and restoration, the applicability of new methods for improving the quality of underwater images has not specifically been captured. In this paper, we review the image enhancement and restoration methods that tackle typical underwater image impairments, including some extreme degradations and distortions. First, we introduce the key causes of quality reduction in underwater images, in terms of the underwater image formation model (IFM). Then, we review underwater restoration methods, considering both the IFM-free and the IFM-based approaches. Next, we present an experimental-based comparative evaluation of the state-of-the-art IFM-free and IFM-based methods, considering also the prior-based parameter estimation algorithms of the IFM-based methods, using both subjective and objective analyses (the used code is freely available at https://github.com/wangyanckxx/SingleUnderwaterImageEnhancementandColorRestoration). Starting from this paper, we pinpoint the key shortcomings of existing methods, drawing recommendations for future research in this area. Our review of underwater image enhancement and restoration provides researchers with the necessary background to appreciate challenges and opportunities in this important field.

View this article on IEEE Xplore

 

Video Based Mobility Monitoring of Elderly People Using Deep Learning Models

In recent years, the number of older people living alone has increased rapidly. Innovative vision systems to remotely assess people’s mobility can help healthy, active, and happy aging. In the related literature, the mobility assessment of older people is not yet widespread in clinical practice. In addition, the poor availability of data typically forces the analyses to binary classification, e.g. normal/anomalous behavior, instead of processing exhaustive medical protocols. In this paper, real videos of elderly people performing three mobility tests of a clinical protocol are automatically categorized, emulating the complex evaluation process of expert physiotherapists. Videos acquired using low-cost cameras are initially processed to obtain skeletal information. A proper data augmentation technique is then used to enlarge the dataset variability. Thus, significant features are extracted to generate a set of inputs in the form of time series. Four deep neural network architectures with feedback connections, even aided by a preliminary convolutional layer, are proposed to label the input features in discrete classes or to estimate a continuous mobility score as the result of a regression task. The best results are achieved by the proposed Conv-BiLSTM classifier, which achieves the best accuracy, ranging between 88.12% and 90%. Further comparisons with shallow learning classifiers still prove the superiority of the deep Conv-BiLSTM classifier in assessing people’s mobility, since deep networks can evaluate the quality of test executions.

View this article on IEEE Xplore

 

A Metaverse: Taxonomy, Components, Applications, and Open Challenges

Unlike previous studies on the Metaverse based on Second Life, the current Metaverse is based on the social value of Generation Z that online and offline selves are not different. With the technological development of deep learning-based high-precision recognition models and natural generation models, Metaverse is being strengthened with various factors, from mobile-based always-on access to connectivity with reality using virtual currency. The integration of enhanced social activities and neural-net methods requires a new definition of Metaverse suitable for the present, different from the previous Metaverse. This paper divides the concepts and essential techniques necessary for realizing the Metaverse into three components (i.e., hardware, software, and contents) and three approaches (i.e., user interaction, implementation, and application) rather than marketing or hardware approach to conduct a comprehensive analysis. Furthermore, we describe essential methods based on three components and techniques to Metaverse’s representative Ready Player One, Roblox, and Facebook research in the domain of films, games, and studies. Finally, we summarize the limitations and directions for implementing the immersive Metaverse as social influences, constraints, and open challenges.

View this article on IEEE Xplore

 

Autonomous Detection and Deterrence of Pigeons on Buildings by Drones

Pigeons may transmit diseases to humans and cause damages to buildings, monuments, and other infrastructure. Therefore, several control strategies have been developed, but they have been found to be either ineffective or harmful to animals and often depend on human operation. This study proposes a system capable of autonomously detecting and deterring pigeons on building roofs using a drone. The presence and position of pigeons were detected in real time by a neural network using images taken by a video camera located on the roof. Moreover, a drone was utilized to deter the animals. Field experiments were conducted in a real-world urban setting to assess the proposed system by comparing the number of animals and their stay durations for over five days against the 21-day-trial experiment without the drone. During the five days of experiments, the drone was automatically deployed 55 times and was significantly effective in reducing the number of birds and their stay durations without causing any harm to them. In conclusion, this study has proven the effectiveness of this system in deterring birds, and this approach can be seen as a fully autonomous alternative to the already existing methods.

View this article on IEEE Xplore

 

Robots and Wizards: An Investigation Into Natural Human–Robot Interaction

The goal of the study was to research different communication modalities needed for intuitive Human-Robot Interaction. This study utilizes a Wizard of Oz prototyping method to enable a restriction-free, intuitive interaction with an industrial robot. The data from 36 test subjects suggests a high preference for speech input, automatic path planning and pointing gestures. The catalogue developed during this experiment contains intrinsic gestures suggesting that the two most popular gestures per action can be sufficient to cover the majority of users. The system scored an average of 74% in different user interface experience questionnaires, while containing forced flaws. These findings allow a future development of an intuitive Human-Robot interaction system with high user acceptance.

*The video published with this article received a promotional prize for the 2020 IEEE Access Best Multimedia Award (Part 2).

View this article on IEEE Xplore

 

An In-Depth Study on Open-Set Camera Model Identification

 

Camera model identification refers to the problem of linking a picture to the camera model used to shoot it. In this paper, as this might be an enabling factor in different forensic applications to single out possible suspects (e.g., detecting the author of child abuse or terrorist propaganda material), many accurate camera model attribution methods have been developed. One of their main drawbacks, however, are a typical closed-set assumption of the problem. This means that an investigated photograph is always assigned to one camera model within a set of known ones present during the investigation, i.e., training time. The fact that a picture can come from a completely unrelated camera model during actual testing is usually ignored. Under realistic conditions, it is not possible to assume that every picture under analysis belongs to one of the available camera models. In this paper, to deal with this issue, we present an in-depth study on the possibility of solving the camera model identification problem in open-set scenarios. Given a photograph, we aim at detecting whether it comes from one of the known camera models of interest or from an unknown one. We compare different feature extraction algorithms and classifiers especially targeting open-set recognition. We also evaluate possible open-set training protocols that can be applied along with any open-set classifier, observing that a simple alternative among the selected ones obtains the best results. Thorough testing on independent datasets show that it is possible to leverage a recently proposed convolutional neural network as feature extractor paired with a properly trained open-set classifier aiming at solving the open-set camera model attribution problem even on small-scale image patches, improving over the state-of-the-art available solutions.

View this article on IEEE Xplore

A Study on the Elimination of Thermal Reflections

 

Recently, thermal cameras have been used in various surveillance and monitoring systems. In particular, in camera-based surveillance systems, algorithms are being developed for detecting and recognizing objects from images acquired in dark environments. However, it is difficult to detect and recognize an object due to the thermal reflections generated in the image obtained from a thermal camera. For example, thermal reflection often occurs on a structure or the floor near an object, similar to shadows or mirror reflections. In this case, the object and the areas of thermal reflection overlap or are connected to each other and are difficult to separate. Thermal reflection also occurs on nearby walls, which can be detected as artifacts when an object is not associated with this phenomenon. In addition, the size and pixel value of the thermal reflection area vary greatly depending on the material of the area and the environmental temperature. In this case, the patterns and pixel values of the thermal reflection and the object are similar to each other and difficult to differentiate. These problems reduce the accuracy of object detection and recognition methods. In addition, no studies have been conducted on the elimination of thermal reflection of objects under different environmental conditions. Therefore, to address these challenges, we propose a method of detecting reflections in thermal images based on deep learning and their elimination via post-processing. Experiments using a self-collected database (Dongguk thermal image database (DTh-DB), Dongguk items and vehicles database (DI&V-DB)) and an open database showed that the performance of the proposed method is superior compared to that of other state-of-the-art approaches.

View this article on IEEE Xplore