Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment

COVID-19 outbreak has put the whole world in an unprecedented difficult situation bringing life around the world to a frightening halt and claiming thousands of lives. Due to COVID-19’s spread in 212 countries and territories and increasing numbers of infected cases and death tolls mounting to 5,212,172 and 334,915 (as of May 22 2020), it remains a real threat to the public health system. This paper renders a response to combat the virus through Artificial Intelligence (AI). Some Deep Learning (DL) methods have been illustrated to reach this goal, including Generative Adversarial Networks (GANs), Extreme Learning Machine (ELM), and Long/Short Term Memory (LSTM). It delineates an integrated bioinformatics approach in which different aspects of information from a continuum of structured and unstructured data sources are put together to form the user-friendly platforms for physicians and researchers. The main advantage of these AI-based platforms is to accelerate the process of diagnosis and treatment of the COVID-19 disease. The most recent related publications and medical reports were investigated with the purpose of choosing inputs and targets of the network that could facilitate reaching a reliable Artificial Neural Network-based tool for challenges associated with COVID-19. Furthermore, there are some specific inputs for each platform, including various forms of the data, such as clinical data and medical imaging which can improve the performance of the introduced approaches toward the best responses in practical applications.

View this article on IEEE Xplore

Simple and Efficient Pattern Matching Algorithms for Biological Sequences

 

The remarkable growth of biological data is a motivation to accelerate the discovery of solutions in many domains of computational bioinformatics. In different phases of the computational pipelines, pattern matching is a very practical operation. For example, pattern matching enables users to find the locations of particular DNA subsequences in a database or DNA sequence. Furthermore, in these expanding biological databases, some patterns are updated over time. To perform faster searches, high-speed pattern matching algorithms are needed. The present paper introduces three pattern matching algorithms that are specially formulated to speed up searches on large DNA sequences. The proposed algorithms raise performance by utilizing word processing (in place of the character processing presented in previous works) and also by searching the least frequent word of the pattern in the sequence. In terms of time cost, the experimental results demonstrate the superiority of the presented algorithms over the other simulated algorithms.

View this article on IEEE Xplore