A Novel Symmetric Stacked Autoencoder for Adversarial Domain Adaptation Under Variable Speed

At present, most of the fault diagnosis methods with extensive research and good diagnostic effect are based on the premise that the sample distribution is consistent. However, in reality, the sample distribution of rotating machinery is inconsistent due to variable working conditions, and most of the fault diagnosis algorithms have poor diagnostic effects or even invalid. To dispose the above problems, a novel symmetric stacked autoencoder (NSSAE) for adversarial domain adaptation is proposed. Firstly, the symmetric stacked autoencoder network with shared weights is used as the feature extractor to extract features which can better express the original signal. Secondly, adding domain discriminator that constituting adversarial with feature extractor to enhance the ability of feature extractor to extract domain invariant features, thus confusing the domain discriminator and making it unable to correctly distinguish the features of the two domains. Finally, to assist the adversarial training, the maximum mean discrepancy (MMD) is added to the last layer of the feature extractor to align the features of the two domains in the high-dimensional space. The experimental results show that, under the condition of variable speed, the NSSAE model can extract domain invariant features to achieve the transfer between domains, and the transfer diagnosis accuracy is high and the stability is strong.

*Published in the IEEE Reliability Society Section within IEEE Access.

View this article on IEEE Xplore

 

The Internet of Federated Things (IoFT)

The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the “cloud” will be substituted by the “crowd” where model training is brought to the edge, allowing IoT devices to collaboratively extract knowledge and build smart analytics/models while keeping their personal data stored locally. This paradigm shift was set into motion by the tremendous increase in computational power on IoT devices and the recent advances in decentralized and privacy-preserving model training, coined as federated learning (FL). This article provides a vision for IoFT and a systematic overview of current efforts towards realizing this vision. Specifically, we first introduce the defining characteristics of IoFT and discuss FL data-driven approaches, opportunities, and challenges that allow decentralized inference within three dimensions: (i) a global model that maximizes utility across all IoT devices, (ii) a personalized model that borrows strengths across all devices yet retains its own model, (iii) a meta-learning model that quickly adapts to new devices or learning tasks. We end by describing the vision and challenges of IoFT in reshaping different industries through the lens of domain experts. Those industries include manufacturing, transportation, energy, healthcare, quality & reliability, business, and computing.

View this article on IEEE Xplore