Design of Smart Sensors for Real-Time Water Quality Monitoring


This paper describes work that has been done on design and development of a water quality monitoring system, with the objective of notifying the user of the real-time water quality parameters. The system is able to measure the physiochemical parameters of water quality, such as flow, temperature, pH, conductivity, and the oxidation reduction potential. These physiochemical parameters are used to detect water contaminants. The sensors, which are designed from first principles and implemented with signal conditioning circuits, are connected to a microcontroller-based measuring node, which processes and analyzes the data. In this design, ZigBee receiver and transmitter modules are used for communication between the measuring and notification nodes. The notification node presents the reading of the sensors and outputs an audio alert when water quality parameters reach unsafe levels. Various qualification tests are run to validate each aspect of the monitoring system. The sensors are shown to work within their intended accuracy ranges. The measurement node is able to transmit data by ZigBee to the notification node for audio and visual display. The results demonstrate that the system is capable of reading physiochemical parameters, and can successfully process, transmit, and display the readings.

View this article on IEEE Xplore